
mensionless parameter; e = R2p2uac2/R~plu~cl, dimensionless parameter; ~ = (lT/l,)(R,/2b) , 
dimensionless parameter; Pe i = PiuiciRi/li, thermal P~clet number. Subscripts: s, surface 
of separating membrane; i = i, 2, "hot" and "cold" channels, respectively; l, outlet of gas; 
T, separating membrane. 

2. 

3. 

4. 
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DETERMINING THE THERMOPHYSICAL CHARACTERISTICS OF 

MATERIALS ON A MODEL OF A SEMIINFINITE BODY WITH 

HEAT SUPPLIED BY MEANS OF A THIN ANNULAR HEATER 

A. G. Shashkov, V. P. Kozlov, 
and V. N. Lipovtsev 

UDC 536.2.083 

Methods of complex calculation of the thermophysical characteristics of mater- 
ials without destroying their integrity are proposed, on the basis of a model 
of a semiinfinite body on heating with a rectangular heat pulse through a spe- 
cified annular region. 

The problem posed here is the complex determination of the thermophysical characteristics 
of materials (without loss of their integrity) using a model of a semiinfimite (in thermal 
terms) body with a pulsed heat supply to its surface. A short heat pulse (of rectangular 
form) acts in a limited annular region, and the excess temperature Ti(r, z, ~) is measured at 
a point coinciding with the center of the annular heat source. 

To solve this problem the two-dimensional nonsteady temperature field Ti(r, z, T) in cy- 
lindrical coordinates must be determined as a function of the heat-flux density q(T) acting in 
a finite annular region R~ < r < R2, where R~ and R2 are the radii of the annular heater at 
the surface of the semiinfi~ite--body when z = 0; R2 > R~. In the regions of variation r < R~ 
and R2 < r < ~ on the surface, there is assumed to be no temperature gradient along the normal 
to the boundary of the body. The initial temperature distribution is assumed to be constant: 
To = const. The origin of the cylindrical coordinates (r = z = 0) is chosen at the center of 
the annular heater. 

The mathematical problem is formulated as a system of three differential heat-conduction 
equations of the form 

O'T~(r, z, ~) ~ 1 OTt(r, z, ~) + O~T~(r, z, ~) _ I OTi(r, z, ~) ( i = 1 ,  2, 3). (1) 
O~ r Or az~ a O~ 
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Fig. i. Functions O'(Fo, ~0, KR) 
1.5; 3) 2.0; 4) 3.0; 5) K R = ~. 
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1) K z = 1.25; 2) 

Fig. 2. Curves of 6, %, as a function of KR: i) Fo = 0.25; 2) 0.45; 3) 
0.55, 4) Fo = 0.65. 

The temperature fields Ti(r, z, 3) correspond to the changes in the variables r, z, ~ in 
the following ranges 

~ r  T1 (r, 

~r Ts (r, 

The boundary conditions for Eq. 
temperature field Tx(r, z, ~) at r = 
to the axis z ~ 0 is observed at any 

z, ~ O<~r<R~, z~O, ~ > 0 ;  

z, ~ R~<r<R2, z>/O, ~ > 0 ;  

z, ~ R ~ < r < o o ,  z ~ O ,  ~ > 0 .  

(i) are simple to specify, bearing in mind that for the 
0 symmetry of the temperatures and heat fluxes relative 
time T, while at the boundaries of the cylindrical sur- 

faces r = R, and r = R2 the matching conditions are satisfied, i.e., the values of the cor- 
responding temperatures and heat fluxes (over the radius) are equal at any z ~ 0, z > 0. 

The solution of the problem for ATi(r , z, T) = Ti(r, z, T) -- To is obtained by operative 
methods and takes the form 

- o'+t| 

ATI(f' Z' r  "-J-l~ "il ~ ~ X 
0 o'--f ,~ 

s K ,o(,.v',,.-+-;) 
X exp (sT) 

R2 

AT, (r, z, T) = ~ exp 4a (~-- ;D 1/~---:~-~ 
0 

x ~(s)cospzds@; 

~ - ~ a  0 o - - ~  | 

X 

(2) 
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= o + t  o, 

St • q (s) cos pzdsdp R2 1 exp (sT) x 
% ~ i  

0 O'-- f. ~ 

ATs(r, z, ~)=- 

K:(R, f p ' + i )  l o ( r ~ / r P ' q - i )  
, Cp, + s 

t2 

= o+t 

f3 R2 I exp(s~) x 
L ~ i  . 

0 O--i~ 

"q(s) cos pzdsdp; 

(3) 

• l : ( R ' l / / P i q - i ) K ~  
/ s 

V f + -~ (4) 

= o+{~ 11 R: p2 + Ko r + -~- 
R: l {" exp (s-c) x q  (s) cos pzdsdp. 

0 o-'~| p~ q_ __s 
V a 

S e t t i n g  Rx = 0, R= = =,  q( r  = qo = c o n s t  i n  Eq. ( 3 ) ,  a o n e - d i m e n s i o n a l  s o l u t i o n  f o r  a 
semiinfinite body is obtained for the case when a constant-power heat source is acting at its 
surface [I]. When Rx = 0, R= = re, q(~) = qo = const, r = 0 (solution at the axis z > 0), an 

w 

expression is obtained for the excess temperature [2, 3] 

ATi(0, z, T ) :  2q~ [ i e r f c ( 2  2 q / ~ - ) ] "  (5) b - ~ "  ) - -  ierfc ( ] / r~  +z~ 

Setting z : 0 in Eq. (5), a solution is obtained for the central point of a constant- 
power circular heat source acting at the surface of a semiinfinite body [4, 5]. 

Consider the particular case of the solution of Eq. (2) when r = 0, i.e., at the axis 
z > 0 

aq- i  =o aq- i  

ATI(0 , Z, T) /~I~, z~'il S -q(s)exp(sx)l,,Oaz)ds- R--2Ls ~x'il ~ $(s)exp(s:)l,2(pz)ds, (6) 
where 

I,~ (pz) : -~- J 1 (pz) "Vp'dp (n = 1, 2). (7) 
o 2 V /  f +  --~s 

The i n t e g r a l  in  Eq. (7) i s  a p a r t i c u l a r  ca se  o f  the  Son in -Gegenbauer  i n t e g r a l  [ 6 ] .  Ca l -  
c u l a t i n g  Isn(PZ) and integrating Eq. (6) with respect to the variable s, it is found that 

T 

b q/~- q / ~  4a (7 - -  ~) exp 4a (1: - -  ~) d~. (8) 
0 

When z : 0 ( t h e  s o l u t i o n  a t  t he  s u r f a c e  o f  a s e m i i n f i n i t e  body a t  a p o i n t  c o i n c i d i n g  wi th  the  
center of the heater ring) 

[~ q (~) R~ 
4a(~--~) 4a(z_ ~) ] }  d~. (9) 

0 

I f  the spec i f i c  heat f luz  q(T) is  speci f ied in  the form of a rectangular pulse, that is  

q(x) : { qo : const, 0<~<T0; (10) 

O, �9 > %, 
then 

- {1 } 
q(s) = S q (T) exp (--  sT) dT = qo [1 -- exp (--  xos)] ; 

0 
( i i )  
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L - ' [  qos {l_exp(_%s)}]=q(~)=qo[ I +U(%_x)_U(%)], 

where U(To -- T) and U(ro) are unit symmetric functions [7]. Substituting the value q(~) = qo 
[i + U(To -- ~) -- U(To)] into Eq. (9) and integrating, an expression is obtained for the change 
in excess temperature ATx(0, O, T) at the surface of a semiinfinite body at a point coinciding 
with the center of the annular heater under the pulsed action of a heat flux 

-- U (,~ -- ~o) b Va(,~_ ~o) )--ierfc(2 va~_~o) )I 
(12) 

Equation (12) may be rewritten in the form 

KR 1 --ierfc (2 V p ~ ) ] -  U (F~ F Q ~  [ierfc (2 1/(1 --%) Fo') -- (13) 

--:- ierfc 2 1 / ( l  - -  %) Fo " 

Curves of O*(Fo,, %, KR) at Foo = 0.04 and various values of KR are shown in Fig. i. 

Determining the thermophysical characteristics of the given semiinfinite body by a pulsed 
method entails finding the time of onset of the excess-temperature maximum (T = Tmax) at the 
center of an annular heater at the body surface and AT1max at this time. Note that it follows 
from the physical representation of the problem that the excess-temperature maximum at the 
given point sets in for any bodies with different thermophysical properties at T > to. In 
this case, U(Fo -- Foo) in Eq. (13) is equal to unity. 

To find the maximum of the function e'(Fo, ~0, KR~ , the first derivative of this function 
with respect to Fo must be set equal to zero 

X 

[ I 4Fomax]--exp[ 4FomxK~ ]-VI-~• exp [ 

i 
(14) 

Since Eq. (14) is analytically unsolvable relative to Fomax, its nonzero roots are de- 
termined by the numerical method of Newton [8]. The values of the roots, calculated with an 
accuracy of 10 -7 are various %*, are shown in Table 1 (K R = 1.25). 

Thus, specifying the specific heat flux qo and its duration of action To in the experi- 
ment, the excess-temperature maximum at the center of the annular heater at the surface of 
the given thermally semiinfinite body AT,(0, 0, Tma x) and the time of onset of this maximum 
~max are measured. Calculating ~ =T0/~max , the corresponding value of Fomax is found from 
the resulting value of ~ and Table i, and hence the thermal diffusivity of the body is 
determined 

Fomax R~ a = -. ( lS)  
{max 

The other thermophysical characteristics are calculated on the basis of a modified form of 
Eq. (12) 

2qo V ~z--~-ax ATe(0, 0, ~max)= b %(Fo. %, KR), (16) 
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TABLE i. Values of the Roots Foma x of Eq. (14) and the Cor- 
responding Values of ~b(FO, ~0, K R) 

0,01 
0,03 
0,05 
0,07 
0,09 
0,11 
0,13 
0,15 
0,17 
0,19 
0,21 
0,23 
0,25 
0,27 
0,29 
0,31 
0,33 
0,35 
0,37 
0,39 
0,41 
0,43 
0,45 
0,47 
0,49 

F~ 

0,20935743 
0,21151167 
0,21374092 
0,21604953 
0,21844216 
0,22092393 
0,22350029 
0,22617724 
0,22896130 
0,23185961 
0,23487990 
0,23803073 
0,24132145 
0,24476245 
0,24836504 
0,25214189 
0,25610707 
0,26027612 
0,26466655 
0,26929802 
0,27419247 
0,27937494 
0,28487365 
0,29072096 
0,29695380 

r 

0,00041806 
0,00126056 
0,00211176 
0,00297192 
0,00384128 
0,00472015 
0,00560880 
0,00650754 
0,00741671 
0,00833663 
0,00926766 
0,01021018 
0,01116459 
0,01213130 
0,01311076 
0,01410343 
0,01510981 
0,01613041 
0,01716578 
0,01821651 
0,01928320 
0,02036650 
0,02146710 
0,02258572 
0,02372310 

I 4 
0,51 
0,53 
0,55 
0,57 
0,59 
0,61 
0,63 
0,65 
0,67 
0,69 
0,71 
0,73 
0,75 
0,77 
0,79 
0,81 
0,83 
0,85 
0,87 
0,89 

" 0,91 
0,93 
0,95 
0,97 
0,99 

FOma x 

0,30361471 
0,31075311 
0,31842643 
0,32670210 
0,33565977 
0,34539431 
0,35601968 
0,36767413 
0,38052694 
0,39478833 
0,41072231 
0,42866586 
0,44905646 
0,47247321 
0,49970092 
0,53183214 
0,57043821 
0,61787112 
0,67782916 
0,75651092 
0,86522813 
1,02725400 
1,30013182 
1,88093677 
4,33630832 

% 

0,02488005 
0,02605740 
0,02725600 
0,02847676 
0,02972057 
0,03098835 
0,03228102 
O, 03359942 
0,03494432 
0,03631632 
0,03771578 
0,03914261 
0,04059607 
O, 04207440 
O, 04357422 
0,04508957 
0,04661032 
0,04811941 
0,04958775 
O, 05096443 
0,05215596 
0,05297756 
0,05301752 
0,05114154 
0,04215940 

where 

(i)2y  ( ) - -  - - -  (PoX % (Fo, %, Kn ) = ierfc ierfc -I/--~O----~a~ 

1 

Values of @b as a function of Foma x and ~0 for K R = 1.25 are shown in Table i. 

The thermal-activity coefficient b is calculated from Eq. (16) 

b ---- 2qo 1/~max 
AT1(0, 0, Zmax) %(Fo, %, KR). (17) 

The thermal conductivity k and specific heat c O are determined from the relations between the 
thermophysical characteristics 

;~ = b V~;  co =- (18) 
12 

Now consider the case when Ra >> Rx, i.e., K R -~ ~. In Eq. (12) in this case 

R~ ), 

' RI R~ ierfc(. 2Ya(~_Xo ) )>>ierfe( 2 Y ~ ) " ) "  (20) 

Then the terms containing R2 in Eq. (12) may be neglected, with a certain error 

AT1 (0, 0, ~ )=  T2q~ {-V'~ierfc / 2 1/a'7~"R1 ) - -  U(~--  ~'~) ierfc (. 2 1/a (~R1-- %) )}. 

It is simple to reduce Eq. (21) to the form 

~(0, O, "0 
O~ (Fo, %) Ki = 2 " l / ~ [ i e r f c  ( :1 1 .2_k7 ~ _ ) - U ( F o - F o o ,  •  2 ] / ( 1 - -  q%, Fo )]" (22) 

(21) 
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A curve of O;(Fo, ~0) (KR = oo) is shown in Fig. 1. 

The relative error 6 arising in Eq. (22) as R= § ~ with respect to Eq. (13) is given by 
the formula 

6 = I O* (F~ %'(Fo,KR ) -  O; ( F o , % ,  KR ) %) 1 "100%" (23) 

Curves of 6 as a function of K R = R2/Rx when Foo = 0.04 and at various Fo are shown in 
Fig. 2. 

It is evident from an analysis of these curves that the relative error is no g=eater 
than 0.008% when Fo < 0.65 and K R = 5. Thus, for Fo < 0.65, the radius R= = 5R, may be re- 
garded as infinite with a relative error for 8; (Fo, ~o7 of 0.008%. 

Analyzing the function 8~(Fo, ~0) in Eq. (22) at the maximum when T > To, the condition 
for the maximum will be determined by the following equation 

[( 1 ex ( I] [81(Fo, ~o)l~o= ] / ~ - ] / ~  exp 4Fomax ]/1- ~0 4(1--~o)Fomax =0 (24) 

Or 

0xpi_ l I l ( l i0 
4 F o m a  x - -  ~ e x p  - -  4 (I - -  ~po)Fom~= 

where ~ = F%/Fomax = %ITmax 

Taking logarithms in Eq. 

and hence 

(25) gives 

(25) 

Fomax = ~o 
V | " (26) 

4(1 

Thus, specifying the specific heat flux qo and its duration of action to in the experi- 
ment and measuring the maximum of the excess temperature at the surface of the given body at 
the point coinciding with the center of the annular heater ATx(0, 0, Tma x) and also the time 
of onset of this maximum Tmax, the value ~ =T~Zmax may be calculated. Then Fomax is deter- 
mined from Eq. (26). The thermal diffusivity is calculated from Eq. (15) and the thermal- 
activity coefficient from Eq. (17), taking into account, however, that in this case 

The thermal conductivity and the volume specific heat are calculated from Eq. (18). 

NOTATION 

Ti(r , z, T), ATi(r, z, T) = Ti(r, z, T) -- To, temperature fields and excess temperatures 
of a semiinfinite body in the corresponding ranges of r (see text); R2, R,, r, external and 
internal radii of annular heat source and current radius; qo, heat-flux density; To, time of 
action of rectangular heat-flux pulse; a, I, b, cp, thermal diffusivity, thermal conductivity 
thermal activity, and volume specific heat of semiinfinite body; z, ~, current coordinate 
normal to surface of semiinfinite body and current time; Ki = qoRx/%To, Kirpichev criterion; 
Fo = aT/R2x, Foo = aTo/RZx, Fourier number; K R = R2/Rx, ratio of external and internal radii 
of annular heat source; ~0 = ~/~ = Foo/Fo , relative time; 8(0, 0, r) = AT:(0, 0, ~)/To, dimen- 
sionless relative temperature at surface of semiinfinite body at center of annular heat 
source; U(T -- To) = U(Fo -- Foo), unit symmetric Heaviside function; Tmax, time of onset of 
excess-temperature maximum; Foma x = aTmax/R2,, Fourier number at time �9 = Zmax; AT,max = ~T~ 

i (0, 0, ~max), maximum excess temperature; ierfcX= edc~t multiple probability integral; p, s, 
x 

parameters of infinite integral Fourier cosine transformation and Laplace transformation. 
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EFFECTIVE THERMAL CONDUCTIVITY OF ALUMINUM OXIDE WITH METALLIC 

FILLERS IN GASEOUS MEDIA AND A VACUUM AT VARIOUS TEMPERATURES 

M. M. Safarov and Kh. Madzhidov UDC 536.21 

Experimental data on ~ of granular porous aluminum oxide as a function of copper 
concentration and temperature in various gaseous media at atmospheric pressure 
and in a vacuum (P = 8.10 -3 mm Hg) are presented. 

Granular porous aluminum oxide is used in the production of ceramics, refractories, forms, 
catalysts, etc. Despite its wide use, the literature offers practically no data on its thermo- 
physical properties. At present only the thermophysical properties of monolithic aluminum ox- 
ide have been studied sufficiently thoroughly [i]. 

The effective thermal conductivity coefficient of the aluminum oxide most widely used in 
high-temperature catalytic processes was studied (specific Surface, 123 m2/g; total pore vol- 
ume, 0.35 cm3/g; bulk density, 1 g/cm'; cylindrical granule dimensions, 0.8-1.25 mm). The 
copper-containing specimens were prepared by steeping the aluminum oxide in a solution of cop- 
per in nitric acid with subsequent thermal processing in air and hydrogen at 673~ 

Effective thermal conductivity was measured by a regular thermal regime cylindrical bi- 
calorimeter [2]. The experimental arrangement consisted of the cylindrical bicalorimeter, 
temperature stabilization system, vacuum system, and filling system. The calorimeter consist- 
ed of two coaxially arranged copper cylinders: internal (diameter 15.95 mm) and external 
(diameter of inner and outer sections 28.28 mm and 90.0 mm). The free space between the cy- 
linders was filled with the specimen under study. The specimen thickness was 6.165 mm, and 
the temperature head across its boundaries with 1.78-0.90=K. During experiments the bicalor- 
imeter temperature was maintained constant to an accuracy of 0.005-0.02~ Relative measure- 
ment uncertainty at a confidence level of u = 0.95 was 3.2%. 

The specimen effective thermal conductivity was determined for the freely poured state. 
According to Table i, the effective thermal conductivity increases with increase in copper 
content. 

T. G. Shevchenko State Pedagogical Institute, Dushanbe. Translated from Inzhenerno- 
Fizicheskii Zhurnal, Vol. 50, No. 3, pp. 465-471, March, 1986. Original article submitted 
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